Ященко А.С. ОНЦ СО РАН (ИРФЭ), с.н.с., к.ф.-м.н.

мониторинга

Возможности радиофизических методов дистанционного зондирования Земли при решении задач экологического

Дирижабль наблюдения

Самолёт-шпион U2

Снимки космодрома Тюратам

Первый снимок Земли из космического пространства

Изображение передаваемое по радиоканалу TIROS-1

Снимок Земли из космоса. Фото Германа Титова

Спутники шпионы

???

Worldview-4

Пример снимка Worldview-4

Ресурсный спутник Sentinel 2, ESA

Мультиспектральная камера, разрешение на местности 10-60 м.

Пример снимка от 01.08.2017

Синтезированное в псевдоцветах изображения поверхности Земли вблизи озера Эбейты

Изображение поверхности Земли вблизи озера Эбейты, длина волны 665 нм

Изображение поверхности Земли вблизи озера Эбейты, длина волны 842 нм

Карта индекса NDVI построенная по данным Sentinel 2

Снимок Sentinel 2. Композитное изображение. Разрешение 10 метров. Покрытие облачностью около 50%

Карта индекса NDVI построенная по данным Sentinel 2

Ресурсный спутник Sentinel 1, ESA

Радиолокатор с синтезированной апертурой 10 м.

Композитное изображение построенное по данным Sentinel 1. Красный и синий каналы – режим VV, зелёный – режим VH. Speckle фильтрация – Lee Sigma Идентификация участков поверхности, засеянных зерновыми культурами

Определение участков поверхности засеянных зерновыми культурами

Определение участков поверхности с произрастающими многолетними травами и луговой растительностью

Определение участков поверхности с произрастающими многолетними травами и луговой растительностью

Внешний вид космических аппаратов

SMOS

Аппаратура: 2-D радиометр 1,4 ГГц

GCOM-W1

Аппаратура: Сканирующий радиометр 6,9-37 ГГц

SMAP

Аппаратура: Сканирующий радиометр 1,4 ГГц

Излучение, принимаемое спутниковым радиометром

Проведение наземных радиометрических измерений на частоте 1,4 ГГц и отбор проб влажности

Временной ряд данных о влажности в 2017 г.

1- данные SMAP, 2 – данные SMOS,

- 3- данные наземных измерений (пшеница)
- 4 данные наземных измерений (костёр)

Характерный вид профиля влажности в поверхностном слое почв и его модельное приближение

Вывод

Радиофизические методы дистанционного мониторинга позволят получать информацию о состоянии подстилающей поверхности в любое время суток в глобальном масштабе. Однако достоверность получаемой информации может быть априорной информации отсутствии об невысока при объекта особенностях мониторинга. Данный Факт определяет важность валидации предоставляемых данных и адаптации используемых алгоритмов определения того или иного параметра для данного территориально-природного комплекса.

1. Bobrov P.P., Yashchenko A.S. Analysis of the SMOS, MODIS and GCOM-W1 Data during the Growing Season in the Southern Part of the Western Siberia //*Proc. of PIERS 2015 in Prague*, Czech, 6-9 July, 2015, P. 1137-1140.

2. Бобров П.П., Ященко А.С. Исследование возможности определения градиента влажности в поверхностном слое почв по данным SMOS и GCOM-W1 //Известия ВУЗов: Физика, 2015, Т. 58, № 8/3, С. 285-289.

3. Yashchenko A. S., Bobrov P. P. Impact of the Soil Moisture Distribution in the Top Layer on the Accuracy Moisture Retrieval by Microwave Radiometer Data //*IEEE Trans. Geosci. Remote Sens*, 2016, Vol. 54, № 9. P. 5239 - 5246.

4. Бобров П.П., Ященко А.С. Новый способ использования данных MODIS при обработке радиометрических данных SMOS для территории Омской области и Северного Казахстана // *Известия ВУЗов: Физика*. 2016. – Т. 59 - № 12/3 – С. 99-102

5. Ященко А.С., Бобров П.П. Особенности обработки данных SMOS Level 1С в задачах дистанционного зондирования // Современные проблемы дистанционного зондирования Земли из космоса. 2017. – Т.14. – №3. – С. 78-91

6. Yashchenko A.S. The Problem the Frozen Soil Mapping of the Steppe Zone //Proc. of PIERS 2017 in St. Petersburg,Russia,22-25May,2017

7. Yashchenko A.S., Bobrov P.P., Krivaltsevitsh S.V. On the Possibility Use Microwave Radiometers Data for Remote Retrieval of the Evaporation from the Soil Surface//*Proc. of PIERS 2017 in St. Petersburg*, Russia, 22-25 May, 2017

8. Yashchenko A.S., Bobrov P.P., Mironov V.L. The Use of Navigation Satellites Signals for Measurement the Absorbance of the Forest Canopy //Proc. of PIERS 2017 in St. Petersburg, Russia, 22-25 May, 2017

Спасибо за внимание

Контур радиометрического снимка SMOS

Контур радиометрического снимка аппарата SMOS. Эллипсами показаны характерные размеры пикселя в зависимости от расположения в кадре.

Угловые зависимости радиояркостной температуры SMOS Level 1C

Маркеры без заливки – данные удалённые при коррекции (вертикальные и диаголнальные кресты) Маркеры с заливкой – данные оставшиеся после коррекции Непрерывные линии – линии тренда для угловых зависимостей после коррекции

Сравнение снимков SMOS с корректными и некорректными данными

